PE文件学习

在这里插入图片描述

一、介绍

PE文件,即Portable Executable文件,是一种标准的文件格式,主要用于微软的Windows操作系统上。这种格式被用来创建可执行程序(如.exe文件)、动态链接库(.DLL文件)、设备驱动(.SYS文件)、ActiveX(.OCX文件)以及其他类型的可执行模块。
PE文件格式设计得非常灵活和强大,它允许程序在不同版本的Windows上运行,从而实现了一定程度的可移植性。PE文件格式是Windows系统加载和执行程序的基础,它允许操作系统将文件加载到内存中并控制其执行环境,同时提供了调试、安全性和资源管理等功能。了解PE文件的结构对于开发人员、反病毒工程师、逆向工程师以及安全研究人员来说非常重要。

二、PE文件解析

2.1 DOS头

DOS部分包含DOS MZ文件头和DOS块。

DOS MZ文件头

DOS MZ文件头就是一个结构体IMAGE_DOS_HEADER,用于保持与MS-DOS的兼容性,其定义如下所示:

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header
 WORD e_magic; // Magic number 2字节,魔术数,对于PE文件应该是“MZ”
 WORD e_cblp; // Bytes on last page of file 最后一页的字节数
 WORD e_cp; // Pages in file 页面数
 WORD e_crlc; // Relocations 重定位项数
 WORD e_cparhdr; // Size of header in paragraphs 头部段数
 WORD e_minalloc; // Minimum extra paragraphs needed 最小额外段数
 WORD e_maxalloc; // Maximum extra paragraphs needed 最大额外段数
 WORD e_ss; // Initial (relative) SS value 初始(SS)选择器
 WORD e_sp; // Initial SP value 初始(SP)
 WORD e_csum; // Checksum 校验和
 WORD e_ip; // Initial IP value 初始IP
 WORD e_cs; // Initial (relative) CS value 初始CS选择器
 WORD e_lfarlc; // File address of relocation table PE头部相对于DOS头部的偏移量
 WORD e_ovno; // Overlay number 重叠编号
 WORD e_res[4]; // Reserved words 储存保留字段
 WORD e_oemid; // OEM identifier (for e_oeminfo) OEM标识符
 WORD e_oeminfo; // OEM information; e_oemid specific OEM信息
 WORD e_res2[10]; // Reserved words 更多储存保留字段
 DWORD e_lfanew; // File address of new exe header PE签名相对于DOS头部的偏移量
 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

总共64字节(0x40),它有很多成员,但我们并不需要去深入的理解每个成员的含义和作用,这是因为这个结构体是给16位平台看的,而我们现在的环境大部分都是32位和64位的,所以现在的平台不在需要这个完整的结构体了,只需要其中的两个成员e_magic和e_lfanew。
你可以尝试在16进制的编辑器中去编辑某个EXE文件的DOS MZ文件头,除了e_magic和e_lfanew两个成员,其他的以0x00填充,然后保存文件,你会发现修改后的文件还是可以正常运行的。保留这两个成员的原因是因为它们代表着所说的PE指纹,操作系统也是根据这个来识别是否是PE文件的,所以不能更改、删除(e_magic是一种标识,e_lfanew则表示PE文件头的位置)。

DOS块

DOS块就是夹在DOS MZ文件头和PE文件头之间的内容,这里面的内容可以根据自己的需要随意的修改和添加,并不会影响文件的正常运行。

2.2 PE头

PE头整体就是如下这个结构体:

typedef struct _IMAGE_NT_HEADERS {
 DWORD Signature; // PE标识
 IMAGE_FILE_HEADER FileHeader; // 标准PE头
 IMAGE_OPTIONAL_HEADER32 OptionalHeader; // 扩展PE头
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

第一个成员就是PE标识,该标识不能被破坏,因为操作系统在启动一个程序的时候会检测这个标识。

标准PE头

标准PE头是PE头的第二个成员,它是如下所示的结构体:

typedef struct _IMAGE_FILE_HEADER {
 WORD Machine; // 可以运行在什么样的CPU上
 WORD NumberOfSections; // 表示节的数量
 DWORD TimeDateStamp; // 编译器填写的时间戳
 DWORD PointerToSymbolTable; // 调试相关
 DWORD NumberOfSymbols; // 调试相关
 WORD SizeOfOptionalHeader; // 扩展PE头的大小
 WORD Characteristics; // 文件属性
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

总共20个字节(0x14),其第一个成员Machine表示可以运行在什么样的CPU上,如果它的值位0x0则表示可以运行在任意的CPU上,支持在Intel 386以及后续的型号CPU运行则值为0x14C,支持64位的CPU则值为0x8664。
第二个成员NumberOfSections表示当前PE文件中节的数量,也就是节表中有几个结构体;第三个成员TimeDateStamp表示编译器编译的时候插入的时间戳,与文件属性里面的创建时间和修改时间是无关的。
第四、第五个成员是调试相关的,暂时不去了解;第六个成员SizeOfOptionalHeader表示扩展PE头的大小,默认情况下32位PE文件对应值为0xE0,64位PE文件对应值为0xF0。
第七个成员Characterstics用来记录当前PE文件的一些属性,该成员是16位大小,用于标识PE文件的特性。每个位代表一个特定的标志,通过位操作可以检查文件是否具有某个特征。下面列出了一些常见的标志位:

  1. IMAGE_FILE_RELOCS_STRIPPED(0x0001): 重定位信息已被删除,通常出现在最终的可执行文件中。
  2. IMAGE_FILE_EXECUTABLE_IMAGE(0x0002):文件是可执行的。
  3. IMAGE_FILE_LINE_NUMS_STRIPPED(0x0004):源代码行号信息已被删除。
  4. IMAGE_FILE_LOCAL_SYMS_STRIPPED(0x0008):本地符号已被删除。
  5. IMAGE_FILE_AGGRESIVE_WS_TRIM(0x0010):文件使用激进的工作集修剪策略。
  6. IMAGE_FILE_LARGE_ADDRESS_AWARE(0x0020):应用程序能处理大于2GB的地址空间,在32位系统中启用此标志才能使用超过2GB的虚拟地址空间。
  7. IMAGE_FILE_BYTES_REVERSED_LO(0x0080):低字节顺序被反转。
  8. IMAGE_FILE_BYTES_32BIT_MACHINE(0x0100):文件是为32位机器编译的。
  9. IMAGE_FILE_DEBUG_STRIPPED(0x0200):调试信息已被删除。
  10. IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP(0x0400):文件可以从交换设备运行。
  11. IMAGE_FILE_NET_RUN_FROM_SWAP(0x0800):文件可以从网络运行。
  12. IMAGE_FILE_SYSTEM(0x1000):文件是一个系统文件。
  13. IMAGE_FILE_DLL(0x2000):文件是一个动态链接库(DLL)。
  14. IMAGE_FILE_UP_SYSTEM_ONLY(0x4000):文件只能在用户处理器上运行。
  15. IMAGE_FILE_BYTES_REVERSED_HI(0x8000):高字节顺序被反转。

在处理PE文件时,可以通过按位与(&)操作符检查Characteristics字段是否设置了某个标志。例如,要检查文件是否为可执行文件,可以使用Characteristics & IMAGE_FILE_EXECUTABLE_IMAGE的结果是否非零。同样地,可以组合多个标志来同时检查多个条件,例如,检查文件是否既可执行又是动态链接库,可以使用Characteristics & (IMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_FILE_DLL)。

扩展PE头

扩展PE头在32位和64位环境下是不一样的,这里只介绍32位扩展PE头。如下结构体就是32位的扩展PE头:

typedef struct _IMAGE_OPTIONAL_HEADER {
 WORD Magic; // PE32:10B PE32+:20B
 BYTE MajorLinkerVersion; // 链接器版本号
 BYTE MinorLinkerVersion; // 链接器版本号
 DWORD SizeOfCode; // 所有代码节的总和(文件对齐后的大小),编译器填的(没用)
 DWORD SizeOfInitializedData; // 包含所有已经初始化数据的节的总大小(文件对齐后的大小),编译器填的(没用)
 DWORD SizeOfUninitializedData; // 包含未初始化数据的节的总大小(文件对齐后的大小),编译器填的(没用)
 DWORD AddressOfEntryPoint; // 程序入口
 DWORD BaseOfCode; // 代码开始的基址,编译器填的(没用)
 DWORD BaseOfData; // 数据开始的基址,编译器填的(没用)
 DWORD ImageBase; // 内存镜像基址
 DWORD SectionAlignment; // 内存对齐
 DWORD FileAlignment; // 文件对齐
 WORD MajorOperatingSystemVersion; // 标识操作系统版本号,主版本号
 WORD MinorOperatingSystemVersion; // 标识操作系统版本号,次版本号
 WORD MajorImageVersion; // PE文件自身的版本号 
 WORD MinorImageVersion; // PE文件自身的版本号
 WORD MajorSubsystemVersion; // 运行所需子系统版本号
 WORD MinorSubsystemVersion; // 运行所需子系统版本号
 DWORD Win32VersionValue; // 子系统版本的值,必须为0
 DWORD SizeOfImage; // 内存中整个PE文件的映射的尺寸
 DWORD SizeOfHeaders; // 所有头加节表按照文件对齐后的大小,否则加载会出错
 DWORD CheckSum; // 校验和
 WORD Subsystem; // 子系统,驱动程序(1)、图形界面(2) 、控制台/DLL(3)
 WORD DllCharacteristics; // 文件特性
 DWORD SizeOfStackReserve; // 初始化时保留的栈大小 
 DWORD SizeOfStackCommit; // 初始化时实际提交的大小 
 DWORD SizeOfHeapReserve; // 初始化时保留的堆大小
 DWORD SizeOfHeapCommit; // 初始化时实践提交的大小 
 DWORD LoaderFlags; // 调试相关
 DWORD NumberOfRvaAndSizes; // 目录项数目
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]; // 表,结构体数组
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

扩展PE头的成员有很多,但我们不需要每个都记住,大概了解一些即可,重点关注如下几个成员:
成员Magic标识当前PE文件是32位还是64位,32位时该值对应0x10B,64位时该值对应0x20B。
成员AddressOfEntryPoint表示当前程序入口的地址,这个成员要与成员ImageBase相加才能得出真正的入口地址,成员ImageBase用来表示内存镜像基址,也就是PE文件在内存中按内存对齐展开后的首地址。
成员SizeOfImage表示内存中整个PE文件映射的大小,可比实际的值大(内存对齐之后的大小,也就表示必须是SectionAlignment的整数倍)。
成员CheckSum表示校验和,是用来判断文件是否被修改的,它的计算方法就是文件的两个字节与两个字节相加,最终的值(不考录溢出情况)就是校验和。
成员DllCharacteristics,它用来表示DLL文件或可执行文件的某些高级属性;它的数据宽度是16位(2字节),以下是常见的标志位:

  1. RESERVED0(0x0001)和RESERVED1(0x0002):保留位,必须为0.
  2. IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE(0x0040):指示DLL支持ASLR(地址空间布局随机化)。这意味着DLL在每次加载时会被加载到不同的地址,从而增加攻击者预测其在内存中位置的难度,提高安全性。
  3. IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY(0x0080):指示所有针对此DLL的代码完整性检查都是强制性的。这可以防止未经授权的修改。
  4. IMAGE_DLLCHARACTERISTICS_NX_COMPAT(0x0100):指示DLL与DEP(数据执行保护)兼容。DEP是一种硬件功能,阻止在标记为不可执行的内存区域中执行代码,有助于防止缓冲区溢出攻击。
  5. IMAGE_DLLCHARACTERISTICS_NO_ISOLATION(0x0200):指示DLL不使用应用程序隔离,如AppContainer或Job Objects。
  6. IMAGE_DLLCHARACTERISTICS_NO_SEH(0x0400):指示DLL不使用SEH(结构化异常处理)。如果设置了这个标志,那么任何尝试从这个DLL中抛出异常的代码都会失败,并导致进程终止。
  7. IMAGE_DLLCHARACTERISTICS_NO_BIND(0x0800):指示加载器不应该绑定到这个DLL的导入。这通常用于延迟加载的DLL,以减少启动时间。
  8. IAMGE_DLLCHARACTERISTICS_APPCONTAINER(0x1000):指示DLL是为AppContainer环境设计的。AppContainer是Windows8及更高版本中的一种隔离技术。
  9. IMAGE_DLLCHARACTERISTICS_WDM_DRIVER(0x2000):指示DLL是一个WDM(Windows Driver Model)驱动程序。
  10. IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE(0x8000):指示DLL是为终端服务器环境设计的,它可以处理多个会话并行运行的情况。

最后一个成员DataDirectory,占用128个字节,为一个IMAGE_DATA_DIRECTORY structure结构体数组(16个)。

typedef struct _IMAGE_DATA_DIRECTORY {
     DWORD VirtualAddress;
     DWORD Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

这个结构体有两个成员,一个成员占用4个字节,也就是8个字节。这个数组有16个数据,也就是16*8=128字节。

2.3 PE节表

在PE中,节数据有几个,分别对应着什么类型以及其他相关的属性都是由PE节表来决定的,PE节表是一个结构体数组,结构体定义如下所示:

#define IMAGE_SIZEOF_SHORT_NAME 8
typedef struct _IMAGE_SECTION_HEADER {
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME]; // ASCII字符串(节名),可自定义,只截取8个字节,可以8个字节都是名字
 union { // Misc,双字,是该节在没有对齐前的真实尺寸,该值可以不准确
 DWORD PhysicalAddress; // 真实宽度,这两个值是一个联合结构,可以使用其中的任何一个
 DWORD VirtualSize; // 一般是取后一个
 } Misc; 
 DWORD VirtualAddress; // 在内存中的偏移地址,加上ImageBase才是在内存中的真正地址
 DWORD SizeOfRawData; // 节在文件中对齐后的尺寸
 DWORD PointerToRawData; // 节区在文件中的偏移
 DWORD PointerToRelocations; // 调试相关
 DWORD PointerToLinenumbers; // 调试相关 
 WORD NumberOfRelocations; // 调试相关 
 WORD NumberOfLinenumbers; // 调试相关 
 DWORD Characteristics; // 节的属性
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

代码中的注释可以大致了解到每个成员的作用,其中有两个成员来描述节的大小,分别是没有对齐前的真实尺寸和对齐后的宽度,这时候会出现一种情况就是对齐前的真实尺寸大于对齐后的宽度,这就是存在全局变量没有赋予初始值导致的,在文件存储中全局变量没有赋予初始值也就不占空间,但是内存中是必须要赋予初始值的,这时候宽度就大了一些,所以在内存中节是谁大就按照谁去展开。
与其他结构体一样,PE节也有属性,这就是成员Characteristics,其数据宽度是32位(4字节),其每一数据位对应的属性如下所示:

//
// Section characteristics.
//
// IMAGE_SCN_TYPE_REG 0x00000000 // Reserved.
// IMAGE_SCN_TYPE_DSECT 0x00000001 // Reserved.
// IMAGE_SCN_TYPE_NOLOAD 0x00000002 // Reserved.
// IMAGE_SCN_TYPE_GROUP 0x00000004 // Reserved.
#define IMAGE_SCN_TYPE_NO_PAD 0x00000008 // Reserved.
// IMAGE_SCN_TYPE_COPY 0x00000010 // Reserved.
 
#define IMAGE_SCN_CNT_CODE 0x00000020 // Section contains code.
#define IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 // Section contains initialized data.
#define IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 // Section contains uninitialized data.
 
#define IMAGE_SCN_LNK_OTHER 0x00000100 // Reserved.
#define IMAGE_SCN_LNK_INFO 0x00000200 // Section contains comments or some other type of information.
// IMAGE_SCN_TYPE_OVER 0x00000400 // Reserved.
#define IMAGE_SCN_LNK_REMOVE 0x00000800 // Section contents will not become part of image.
#define IMAGE_SCN_LNK_COMDAT 0x00001000 // Section contents comdat.
// 0x00002000 // Reserved.
// IMAGE_SCN_MEM_PROTECTED - Obsolete 0x00004000
#define IMAGE_SCN_NO_DEFER_SPEC_EXC 0x00004000 // Reset speculative exceptions handling bits in the TLB entries for this section.
#define IMAGE_SCN_GPREL 0x00008000 // Section content can be accessed relative to GP
#define IMAGE_SCN_MEM_FARDATA 0x00008000
// IMAGE_SCN_MEM_SYSHEAP - Obsolete 0x00010000
#define IMAGE_SCN_MEM_PURGEABLE 0x00020000
#define IMAGE_SCN_MEM_16BIT 0x00020000
#define IMAGE_SCN_MEM_LOCKED 0x00040000
#define IMAGE_SCN_MEM_PRELOAD 0x00080000
 
#define IMAGE_SCN_ALIGN_1BYTES 0x00100000 //
#define IMAGE_SCN_ALIGN_2BYTES 0x00200000 //
#define IMAGE_SCN_ALIGN_4BYTES 0x00300000 //
#define IMAGE_SCN_ALIGN_8BYTES 0x00400000 //
#define IMAGE_SCN_ALIGN_16BYTES 0x00500000 // Default alignment if no others are specified.
#define IMAGE_SCN_ALIGN_32BYTES 0x00600000 //
#define IMAGE_SCN_ALIGN_64BYTES 0x00700000 //
#define IMAGE_SCN_ALIGN_128BYTES 0x00800000 //
#define IMAGE_SCN_ALIGN_256BYTES 0x00900000 //
#define IMAGE_SCN_ALIGN_512BYTES 0x00A00000 //
#define IMAGE_SCN_ALIGN_1024BYTES 0x00B00000 //
#define IMAGE_SCN_ALIGN_2048BYTES 0x00C00000 //
#define IMAGE_SCN_ALIGN_4096BYTES 0x00D00000 //
#define IMAGE_SCN_ALIGN_8192BYTES 0x00E00000 //
// Unused 0x00F00000
 
#define IMAGE_SCN_LNK_NRELOC_OVFL 0x01000000 // Section contains extended relocations.
#define IMAGE_SCN_MEM_DISCARDABLE 0x02000000 // Section can be discarded.
#define IMAGE_SCN_MEM_NOT_CACHED 0x04000000 // Section is not cachable.
#define IMAGE_SCN_MEM_NOT_PAGED 0x08000000 // Section is not pageable.
#define IMAGE_SCN_MEM_SHARED 0x10000000 // Section is shareable.
#define IMAGE_SCN_MEM_EXECUTE 0x20000000 // Section is executable.
#define IMAGE_SCN_MEM_READ 0x40000000 // Section is readable.
#define IMAGE_SCN_MEM_WRITE 0x80000000 // Section is writeable.

一个EXE文件的16进制图例子
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/771352.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

汽车信息安全--数据安全:图像脱敏

General 随着车联网的发展,汽车越来越智能化,就像是一部“装着四个轮子的手机”。 有人说,智能手机就如同一部窃听器,无论你开机或者关机,它都会无时不刻地监听着用户的一举一动。 可想而知,智能车辆上…

马工程刑法期末复习笔记重点2

马工程刑法期末复习笔记重点2

8人团队历时半年打造开源版GPT-4o,零延迟演示引爆全网!人人可免费使用!

目录 01 Moshi 02 背后技术揭秘 GPT-4o可能要等到今年秋季才会公开。 然而,由法国8人团队开发的原生多模态Moshi,已经达到了接近GPT-4o的水平,现场演示几乎没有延迟,吸引了大量AI专家的关注。 令人惊讶的是,开源版的…

rtsp地址 + 测试网站 + java(免环境、免插件、零编码转换http播放)

目录 1、创建rtsp网站 2、测试rtsp网站 3、Java实现rtsp播放 ①maven添加依赖 ②访问http地址即可展示视频内容 1、创建rtsp网站 填写邮箱即可获得两个可用的rtsp网站(每月可免费用2G): https://rtsp.stream/ 2、测试rtsp网站 测试网络…

Springboot+Vue3开发学习笔记《2》

SpringbootVue3开发学习笔记《2》 博主正在学习SpringbootVue3开发,希望记录自己学习过程同时与广大网友共同学习讨论。 总共涉及两部分,第一部分为基础部分学习,第二部分为实战部分。 一、学习路径 1.1 基础部分 配置文件整合MyBatisBea…

在docker配置Nginx环境配置

应用于商业模式集中,对于各种API的调用,对于我们想要的功能进行暴露,对于不用的进行拦截进行鉴权。用于后面的付费 开发环境 正式上线模式 一、常用命令 停止:docker stop Nginx重启:docker restart Nginx删除服务&a…

【笔记】记录一次全新的Java项目部署过程

记录一次全新的Java项目部署过程 环境:CentOS7 一、初始环境准备 yum install wget -y yum install vim -y yum install net-tools -y mkdir /data mkdir /data/html mkdir /data/backend一、安装JDK 17 安装JDK17 # 下载rpm wget https://download.oracle.com…

@amap/amap-jsapi-loader 实现高德地图中添加多边围栏,并可编辑,编辑后获得围栏各个点的经纬度

先上一张效果图 看看是不是大家想要的效果~ ❤️ 希望其中的小点能帮助大家,主要看怎么绘制在地图上的代码即可 1.第一步要加入项目package.json中或者直接yarn install它都可以 想必大家应该都会 "amap/amap-jsapi-loader": "0.0.7&qu…

深圳合规新动向,这个关键环节要做好

随着全球商业环境的日益复杂化,企业合规管理已成为维护公司稳健运营和市场竞争力的核心要素。特别是对于位于创新前沿的深圳市,有效的合规管理系统不仅是满足法律和监管要求的必须,更是企业可持续发展的关键。 深圳市在全国率先探索并成功实…

卡尔曼滤波Q和R怎么调

卡尔曼滤波器是一种有效的估计算法,主要用于在存在噪声的环境中估计动态系统的状态。它通过结合预测模型(系统动态)和观测数据(包括噪声)来实现这一点。在卡尔曼滤波中,调整过程噪声协方差矩阵 ( Q ) 和测量…

uboot run命令基本使用

run 命令可以用于运行环境变量的中定义的命令,run bootcmd 可以运行bootcmd中启动命令 作用:可以运行我们自定义的环境变量 include/command.h common/cli.c /*** board_run_command() - Fallback function to execute a command** When no command line features are enabled …

自然语言处理学习--3

对自然语言处理领域相关文献进行梳理和总结,对学习的文献进行梳理和学习记录。希望和感兴趣的小伙伴们一起学习。欢迎大家在评论区进行学习交流! 论文:《ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information》 下面…

软件确认测试和系统测试包括哪些测试内容?有什么区别?

一、软件确认测试 软件确认测试,顾名思义,是为了确认软件的正确性和完整性而进行的测试过程。它旨在验证软件是否符合用户需求和软件开发规范。测试内容包括: 1、功能确认:通过对软件各项功能进行测试,验证其是否按照…

商用车水箱浮球液位开关

商用车水箱浮球液位开关概览 商用车水箱浮球液位开关是一种用于监测商用车辆水箱液位的设备,它可以有效地控制和监控水箱中的水位,确保车辆的正常运作。这种液位开关通常安装在水箱内部,通过浮球和磁性原理来感知液位的变化,并通…

AI墓地:738个倒闭AI项目的启示

近年来,人工智能技术迅猛发展,然而,不少AI项目却在市场上悄然消失。根据AI工具聚合网站“DANG”的统计,截至2024年6月,共有738个AI项目停运或停止维护。本文将探讨这些AI项目失败的原因,并分析当前AI初创企…

商务视频推广打造有吸引力的7个秘诀-华媒舍

商务视频推广是现代企业发展的重要工具,它能够帮助企业吸引更多的目标客户,提升品牌知名度,增加销售量。但是,如何打造一部有吸引力的商务视频推广呢?本文将为您介绍7个秘诀,帮助您在商务视频推广中取得成功…

【Unity navmeshaggent 组件】

【Unity navmeshaggent 组件】 组件概述: NavMeshAgent是Unity AI系统中的一个组件,它允许游戏对象(通常是一个角色或AI)在导航网格(NavMesh)上自动寻路。 组件属性: Radius:导航…

100个名人的家,娄艺潇的家:大美国色,浪漫栖居

冠珠瓷砖「100个名人的家」,大美筑家,中国冠珠2024大美筑家之旅,冠珠瓷砖「100个名人的家」,探索中国人的烟火浪漫与美学追求。从中国家文化、人文居所、人生底蕴层面,发掘大美人居的故事,以中国瓷砖、空间…

无人机测绘需要注意什么?

无人机测绘是一项高精度的测量工作,需要注意以下四点: 一、作业前准备:沟通相关事宜,现场勘查,飞行环境检查等; 二、航线规划与像控点布设:航线规划是任务规划的核心内容,需要综合…

工业智能网关在现代工业生产中的重要性-天拓四方

工业智能网关是一款具备挖掘工业设备数据并接入到自主开发的云平台的智能嵌入式网络设备。它具备数据采集、协议解析、边缘计算,以及4G/5G/WiFi数据传输等功能,并能接入工业云平台。这种网关不仅支持采集PLC、传感器、仪器仪表和各种控制器,还…